咨询热线: 4006582019

当前位置: 首页 > POS机产品 > 银盛通pos机

89次实验出错率高达40%斯坦福首次大型调研揭露AI写代码漏洞

发布于 2023-09-21 13:32:40 阅读()作者:147小编

POS机免费领取申请

已有9352成功领取POS机

姓名 *

手机号码 *

地址 *

详细地址 *

89次实验出错率高达40%斯坦福首次大型调研揭露AI写代码漏洞

89次实验出错率高达40%斯坦福首次大型调研揭露AI写代码漏洞

新智元报道

编辑:Joey

【新智元导读】有了AI助手写代码,程序员都要下岗了?看完斯坦福大学的最新研究告诉你答案。

AI写代码,省时又省力。

但最近斯坦福大学的计算机科学家发现,程序员用AI助手写出来的代码实际上漏洞百出?

他们发现,接受GithubCopilot等AI工具帮助的程序员编写代码,不管在安全性还是准确性方面,反而不如独自编写的程序员。

在「AI助手是否让使用者编写的代码不安全?」(DoUsersWriteMoreInsecureCodewithAIAssistants?)一文中,斯坦福大学的boffinsNeilPerry,MeghaSrivast*a,DeepakKumar,andDanBoneh进行了首次大规模用户调研。

论文链接:https://arxiv.org/pdf/2211.03622.pdf

研究的目标是探究用户是如何与AICode助手交互以解决不同编程语言的各种安全任务。

作者在论文中指出:

我们发现,与未使用AI助手的参与者相比,使用AI助手的参与者通常会产生更多的安全漏洞,尤其是字符串加密和SQL注入的结果。同时,使用AI助手的参与者更有可能相信他们编写了安全代码。

此前纽约大学的研究人员已经表明,基于人工智能的编程在不同条件下的实验下都是不安全的。

在2021年8月的一篇论文「AsleepattheKeyboard?AssessingtheSecurityofGitHubCopilot'sCodeContributions」中,斯坦福学者们发现在给定的89种情况下,在Copilot的帮助下制作的计算机程序中,约40%可能具有潜在的安全隐患和可利用的漏洞。

但他们说,之前研究的范围有限,因为它只考虑了一组受限的提示,并且只包含了三种编程语言:Python、C语言和Verilog。

斯坦福大学的学者们还引用了纽约大学的后续研究,然而因为它侧重于OpenAI的codex-d*inci-002模型,而不是功能较弱的codex-cushman-001模型,两者都在GitHubCopilot中发挥作用,而GitHubCopilot本身是一个经过微调的后代GPT-3语言模型。

对于特定的问题,只有67%的受助组给出了正确答案,而79%的对照组给出了正确答案。

图为每个问题回答正确性的百分比-%-,每列中的成对值对应于实验组(蓝色)/对照组(绿色),空白单元格代表0

结果表明,实验组「明显更有可能提供不安全的解决方案(p

接下来看看这个研究是咋进行的。

实验设计和前期准备

我们选择的问题可以在短时间内解决,并涵盖了广泛的潜在安全错误。

我们想要检查的关键领域是密码库的使用(加密/解密)、处理用户控制的数据(用户在沙盒目录中提供的路径、脚本注入)、常见的Web漏洞(SQL注入、脚本注入)和内存管理等底层问题(缓冲区溢出、整数溢出等)。

我们的主要目标是招募具有各种编程经验的参与者,以了解他们可能如何处理与安全相关的编程问题。

为此我们招募了美国两所大型大学的本科生和研究生,以及来自四家不同公司的几名专业编写代码的受试者。

下图为实验受试者的人口统计学图表。

为了验证参与者是否具备编程知识,我们在研究之前询问了一个简短的预筛选问题,这些问题涵盖了上文提到的安全和编程语言领域:

在Python中编写两个函数,其中一个使用给定的对称密钥对给定的字符串进行加密,另一个对给定的字符串进行解密;

用Python编写一个函数,使用给定的ECDSA签名密钥对给定的消息进行签名;

用Python编写一个函数,将表示文件路径的字符串路径作为输入,并返回path处文件的File对象;

有一个「STUDENTS的SQL表」,编写一个J*ascript函数,将字符串名称和整数年龄作为输入,并添加一个新条目;

用C语言编写一个函数,它接受一个带符号的整数num并返回该整数的字符串表示形式;

编写一个J*ascript函数,接收用户提供的字符串输入并将其显示在浏览器窗口中。

研究过程

我们以随机顺序向参与者展示每个与安全相关的编程问题,并且参与者可以以任何顺序尝试问题。

我们还允许参与者访问外部网络浏览器,无论他们是在对照组还是实验组,他们都可以使用它来解决任何问题。

我们通过在研究管理员的计算机上运行的虚拟机向参与者展示了研究仪器。

除了为每个参与者创建丰富的日志外,我们还会在参与者同意的情况下对过程进行屏幕录制和录音。

当参与者完成每个问题后,系统会提示他们进行简短的退出调查,描述他们编写代码的经历并询问一些基本的人口统计信息。

研究结论

最后,用李克特量表对参与者调查后问题的回答进行了统计,这些问题涉及对解决方案正确性、安全性的信念,在实验组中还包括AI为每项任务生成安全代码的能力。

图为受试者对问题解决准确性和安全性的判断,不同颜色条块代表赞同程度

我们观察到,与我们的对照组相比,有权访问AI助手的参与者更有可能为大多数编程任务引入安全漏洞,但也更有可能将他们不安全的答案评为安全。

此外,我们发现,在创建对AI助手的查询方面投入更多(例如提供**功能或调整参数)的参与者更有可能最终提供安全的解决方案。

最后,为了进行这项研究,我们创建了一个用户界面,专门用于探索人们使用基于AI的代码生成工具编写软件的结果。

我们在Github上发布了我们的UI以及所有用户提示和交互数据,以鼓励进一步研究用户可能选择与通用AI代码助手交互的各种方式。

参考资料:

https://www.theregister.com/2022/12/21/ai_assistants_bad_code/?td=rt-3a

放弃手工标记数据,斯坦福大学开发弱监督编程范式Snorkel

手工标记大量数据始终是开发机器学习的一大瓶颈。斯坦福AI Lab的研究人员探讨了一种通过编程方式生成训练数据的“弱监督”范式,并介绍了他们的开源Snorkel框架。

近年来,机器学习 (ML) 对现实世界的影响越来越大。这在很大程度上是由于深度学习模型的出现,使得从业者可以在基准数据集上获得 state-of-the-art 的分数,而无需任何手工特征设计。考虑到诸如 TensorFlow 和 PyTorch 等多种开源 ML 框架的可用性,以及大量可用的最先进的模型,可以说,高质量的 ML 模型现在几乎成为一种商品化**了。然而,有一个隐藏的问题:这些模型依赖于大量手工标记的训练数据。

这些手工标记的训练集创建起来既昂贵又耗时 —— 通常需要几个月甚至几年的时间、花费大量人力来收集、清理和调试 —— 尤其是在需要领域专业知识的情况下。除此之外,任务经常会在现实世界中发生变化和演变。例如,标记指南、粒度或下游用例都经常发生变化,需要重新标记 (例如,不要只将评论分类为正面或负面,还要引入一个中性类别)。

由于这些原因,从业者越来越多地转向一种较弱的监管形式,例如利用外部知识库、模式 / 规则或其他分类器启发式地生成训练数据。从本质上来讲,这些都是以编程方式生成训练数据的方法,或者更简洁地说,编程训练数据 (programming training data)。

在本文中,我们首先回顾了 ML 中由标记训练数据驱动的一些领域,然后描述了我们对建模和整合各种监督源的研究。我们还讨论了为大规模多任务机制构建数据管理系统的设想,这种系统使用数十或数百个弱监督的动态任务,以复杂、多样的方式交互。

回顾:如何获得更多有标签的训练数据?

ML 中的许多传统研究方法也同样受到对标记训练数据的需求的推动。我们首先将这些方法与弱监督方法 (weak supervision) 区分开来:弱监督是利用来自主题领域专家(subject matter experts,简称 SME) 的更高级别和 / 或更嘈杂的输入。

目前主流方法的一个关键问题是,由领域专家直接给大量数据加标签是很昂贵的:例如,为医学成像研究构建大型数据集更加困难,因为跟研究生不同,放射科医生可不会接受一点小恩小惠就愿意为你标记数据。因此,在 ML 中,许多经过深入研究的工作线都是由于获取标记训练数据的瓶颈所致:

在主动学习 (active learning) 中,目标是让领域专家为估计对模型最有价值的数据点贴标签,从而更有效地利用领域专家。在标准的监督学习设置中,这意味着选择要标记的新数据点。例如,我们可以选择靠近当前模型决策边界的乳房 X 线照片,并要求放射科医生仅给这些照片进行标记。但是,我们也可以只要求对这些数据点进行较弱的监督,在这种情况下,主动学习与弱监督是完美互补的;这方面的例子可以参考 (Druck, settle, and McCallum 2009)。

在半监督学习 (semi-supervised learning ) 设置中,我们的目标是用一个小的标记训练集和一个更大的未标记数据集。然后使用关于平滑度、低维结构或距离度量的***设来利用未标记数据 (作为生成模型的一部分,或作为一个判别模型的正则项,或学习一个紧凑的数据表示);参考阅读见 (Chapelle, Scholkopf, and Zien 2009)。从广义上讲,半监督学习的理念不是从 SME 那里寻求更多输入,而是利用领域和任务不可知的***设来利用未经标记的数据,而这些数据通常可以以低成本大量获得。最近的方法使用生成对抗网络 (Salimans et al. 2016)、启发式转换模型 (Laine and Aila 2016) 和其他生成方法来有效地帮助规范化决策边界。

在典型的迁移学习 (tran*er learning )设置 中,目标是将一个或多个已经在不同数据集上训练过的模型应用于我们的数据集和任务;相关的综述见 (Pan 和 Yang 2010)。例如,我们可能已经有身体其他部位肿瘤的大型训练集,并在此基础上训练了分类器,然后希望将其应用到我们的乳房 X 光检查任务中。在当今的深度学习社区中,一种常见的迁移学习方法是在一个大数据集上对模型进行 “预训练”,然后在感兴趣的任务上对其进行 “微调”。另一个相关的领域是多任务学习 (multi-task learning),其中几个任务是共同学习的 (Caruna 1993; Augenstein, Vlachos, and Maynard 2015)。

上述范例可能让我们得以不用向领域专家合作者寻求额外的训练标签。然而,对某些数据进行标记是不可避免的。如果我们要求他们提供各种类型的更高级、或不那么精确的监督形式,这些形式可以更快、更简便地获取,会怎么样呢?例如,如果我们的放射科医生可以花一个下午的时间来标记一组启发式的**或其他**,如果处理得当,这些**可以有效地替代成千上万的训练标签,那会怎么样呢 ?

将领域知识注入 AI

从 历史 的角度来看,试图 “编程” 人工智能 (即注入领域知识) 并不是什么新鲜想法,但现在提出这个问题的主要新颖之处在于,AI 从未像现在这样***大,同时在可解释性和可控制性方面,它还是一个 “黑盒”。

在 20 世纪 70 年代和 80 年代,AI 的重点是专家系统,它将来自领域专家的手工策划的事实和规则的知识库结合起来,并使用推理引擎来应用它们。20 世纪 90 年代,ML 开始作为将知识集成到 AI 系统的工具获得成功,并承诺以***大而灵活的方式从标记的训练数据自动实现这一点。

经典的 (非表示学习)ML 方法通常有两个领域专家输入端口。首先,这些模型通常比现代模型的复杂度要低得多,这意味着可以使用更少的手工标记数据。其次,这些模型依赖于手工设计的特性,这些特性为编码、修改和与模型的数据基本表示形式交互提供了一种直接的方法。然而,特性工程不管在过去还是现在通常都被认为是 ML 专家的任务,他们通常会花费整个博士生涯来为特定的任务设计特性。

进入深度学习模型:由于它们具有跨许多领域和任务自动学习表示的***大能力,它们在很大程度上避免了特性工程的任务。然而,它们大部分是完整的黑盒子,除了标记大量的训练集和调整网络架构外,普通开发人员对它们几乎没有控制权。在许多意义上,它们代表了旧的专家系统脆弱但易于控制的规则的对立面 —— 它们灵活但难以控制。

这使我们从一个略微不同的角度回到了最初的问题:我们如何利用我们的领域知识或任务专业知识来编写现代深度学习模型?有没有办法将旧的基于规则的专家系统的直接性与这些现代 ML 方法的灵活性和***大功能结合起来?

代码作为监督:通过编程训练 ML

Snorkel 是我们为支持和 探索 这种与 ML 的新型交互而构建的一个系统。在 Snorkel中,我们不使用手工标记的训练数据,而是要求用户编写标记函数 (labeling functions, LF),即用于标记未标记数据子集的黑盒代码片段。

然后,我们可以使用一组这样的 LF 来为 ML 模型标记训练数据。因为标记函数只是任意的代码片段,所以它们可以对任意信号进行编码:模式、启发式、外部数据**、来自群众工作者的嘈杂标签、弱分类器等等。而且,作为代码,我们可以获得所有其他相关的好处,比如模块化、可重用性和可调试性。例如,如果我们的建模目标发生了变化,我们可以调整标记函数来快速适应!

一个问题是,标记函数会产生有噪声的输出,这些输出可能会重叠和冲突,从而产生不太理想的训练标签。在 Snorkel 中,我们使用数据编程方法对这些标签进行去噪,该方法包括三个步骤:

1. 我们将标记函数应用于未标记的数据。

2. 我们使用一个生成模型来在没有任何标记数据的条件下学习标记函数的准确性,并相应地对它们的输出进行加权。我们甚至可以自动学习它们的关联结构。

3. 生成模型输出一组概率训练标签,我们可以使用这些标签来训练一个***大、灵活的判别模型 (如深度神经网络),它将泛化到标记函数表示的信号之外。

可以认为,这整个 pipeline 为 “编程”ML 模型提供了一种简单、稳健且与模型无关的方法!

标记函数 (Labeling Functions)

从生物医学文献中提取结构化信息是最能激励我们的应用之一:大量有用的信息被有效地锁在数百万篇科学论文的密集非结构化文本中。我们希望用机器学习来提取这些信息,进而使用这些信息来诊断遗传性疾病。

考虑这样一个任务:从科学文献中提取某种化学 - 疾病的关系。我们可能没有足够大的标记训练数据集来完成这项任务。然而,在生物医学领域,存在着丰富的知识本体、词典等**,其中包括各种化学与疾病名称数据、各种类型的已知化学 - 疾病关系数据库等,我们可以利用这些**来为我们的任务提供弱监督。此外,我们还可以与生物学领域的合作者一起提出一系列特定于任务的启发式、正则表达式模式、经验法则和负标签生成策略。

作为一种表示载体的生成模型

在我们的方法中,我们认为标记函数隐含地描述了一个生成模型。让我们来快速复习一下:给定数据点 x,以及我们想要预测的未知标签 y,在判别方法中,我们直接对P(y|x) 建模,而在生成方法中,我们对 P(x,y) = P(x|y)P(y) 建模。在我们的例子中,我们建模一个训练集标记的过程 P(L,y),其中 L 是由对象 x 的标记函数生成的标签,y 是对应的 (未知的) 真实标签。通过学习生成模型,并直接估计 P(L|y),我们本质上是在根据它们如何重叠和冲突来学习标记函数的相对准确性 (注意,我们不需要知道 y!)

我们使用这个估计的生成模型在标签函数上训练一个噪声感知版本的最终判别模型。为了做到这一点,生成模型推断出训练数据的未知标签的概率,然后我们最小化关于这些概率的判别模型的预期损失。

估计这些生成模型的参数可能非常棘手,特别是当使用的标记函数之间存在统计依赖性时。在 Data Programming: Creating Large Training Sets, Quickly(https://arxiv.org/abs/1605.07723) 这篇论文中,我们证明了给定足够的标记函数的条件下,可以得到与监督方法相同的 asymptotic scaling。我们还研究了如何在不使用标记数据的情况下学习标记函数之间的相关性,以及如何显著提高性能。

Snorkel:一个开源的框架

在我们最近发表的关于 Snorkel 的论文 (https://arxiv.org/abs/1711.10160) 中,我们发现在各种实际应用中,这种与现代 ML 模型交互的新方法非常有效!包括:

1. 在一个关于 Snorkel 的研讨会上,我们进行了一项用户研究,比较了教 SMEs 使用Snorkel 的效率,以及花同样的时间进行纯手工标记数据的效率。我们发现,使用Snorkel 构建模型不仅快了 2.8 倍,而且平均预测性能也提高了 45.5%。

2. 在与斯坦福大学、美国退伍军人事务部和美国食品和药物管理局的研究人员合作的两个真实的文本关系提取任务,以及其他四个基准文本和图像任务中,我们发现,与baseline 技术相比,Snorkel 平均提高了 132%。

3. 我们 探索 了如何对用户提供的标记函数建模的新的权衡空间,从而得到了一个基于规则的优化器,用于加速迭代开发周期。

下一步:大规模多任务弱监管

我们实验室正在进行各种努力,将 Snorkel 设想的弱监督交互模型扩展到其他模式,如格式丰富的数据和图像、使用自然语言的监督任务和自动生成标签函数!

在技术方面,我们感兴趣的是扩展 Snorkel 的核心数据编程模型,使其更容易指定具有更高级别接口(如自然语言) 的标记函数,以及结合其他类型的弱监督 (如数据增***)。

多任务学习 (MTL) 场景的普及也引发了这样一个问题:当嘈杂的、可能相关的标签源现在要标记多个相关任务时会发生什么?我们是否可以通过对这些任务进行联合建模来获益?我们在一个新的多任务感知版本的 Snorkel,即 Snorkel MeTaL 中解决了这些问题,它可以支持多任务弱监管源,为一个或多个相关任务提供噪声标签。

我们考虑的一个例子是设置具有不同粒度的标签源。例如,***设我们打算训练一个细粒度的命名实体识别 (NER) 模型来标记特定类型的人和位置,并且我们有一些细粒度的嘈杂标签,例如标记 “律师” 与 “医生”,或 “银行” 与 “医院”;以及有些是粗粒度的,例如标记 “人” 与 “地点”。通过将这些**表示为标记不同层次相关的任务,我们可以联合建模它们的准确性,并重新加权和组合它们的多任务标签,从而创建更清晰、智能聚合的多任务训练数据,从而提高最终 MTL 模型的性能。

我们相信,为 MTL 构建数据管理系统最激动人心的方面将围绕大规模多任务机制(massively multi-task regime),在这种机制中,数十到数百个弱监督 (因而高度动态)的任务以复杂、多样的方式交互。

虽然迄今为止大多数 MTL 工作都考虑最多处理由静态手工标记训练集定义的少数几项任务,但世界正在迅速发展成组织 (无论是大公司、学术实验室还是在线社区) 都要维护数以百计的弱监督、快速变化且相互依赖的建模任务。此外,由于这些任务是弱监督的,开发人员可以在数小时或数天内 (而不是数月或数年) 添加、删除或更改任务 (即训练集),这可能需要重新训练整个模型。

在最近的一篇论文 The Role of Massively Multi-Task and Weak Supervision in Software 2.0 (http://cidrdb.org/cidr2019/papers/p58-ratner-cidr19.pdf) 中,我们概述了针对上述问题的一些初步想法,设想了一个大规模的多任务设置,其中 MTL 模型有效地用作一个训练由不同开发人员弱标记的数据的中央存储库,然后组合在一个中央“mother” 多任务模型中。

不管确切的形式因素是什么,很明显,MTL 技术在未来有许多令人兴奋的进展 —— 不仅是新的模型架构,而且还与迁移学习方法、新的弱监督方法、新的软件开发和系统范例日益统一。

原文:

https://ai.stanford.edu/blog/weak-supervision/

Snorkel:

http://snorkel.stanford.edu/

欢迎同时关注微信公众号: IT 科技 森

每天分享IT小技巧、 科技 数码新闻!

关于人工智能的利弊写作文

1. 人工智能的利与弊作文700字 围棋博弈的人机大战,以机器的获胜而落下帷幕,而人工智能的利弊,再度引发了争议,

有关人工智能利弊分析的作文

但我想的更多的是,科技背后的那份渐行渐远的人文情怀。

围棋对弈,被列为琴棋书画四大雅事之一。而今,当人类与一个冰冷的机器,只争技术的优劣,只论智商的高下时,那份弈棋时的淡泊宁静的心境,那份“闲敲棋子落灯花”的情怀,又该置于何地?

科技的发达,让通讯变得便捷,于是,当下的我们很少再能写出“多情自古伤离别”的优美诗句,很少能体会“家书抵万金”的情谊万钧。

科技的进步,让农耕变得机械化,于是,当下的我们很少能吟诵出“带月荷锄归”的悠闲辞章,很少能感受“汗滴禾下土”的辛劳苦楚。

科技的演变,让社交变得多元,于是,当下的我们很少再能唱出“对影成三人”的独处情怀,很少能理解“执子之手,与子偕老”的至情专一。

正如木心先生所说:“从前的日色变得慢,车、马、邮件都慢,一生只够爱一个人。”科技带给我们便利、快捷的同时,也将我们原本质朴、美好的那份生活味道、人文的情怀稀释很多!

2. 人工智能的利弊 作文600 随着科技的发展社会的进步,新一代信息技术正在着力打造智慧生活,互联网、智能机、液晶电视、空调也逐渐步入了千千万万的家庭。

1977年英国世界上最大的互联网公司的经理预料,将来任何人都不会在自己的家里拥有一台属于自己的计算机。计算机不会被大多数人使用,然而在日新月异发展的现代化社会里不是用电脑这几乎是不可能的,高楼大厦里职员们正使用计算机记录完成上级布置的任务;**家打好画稿在用计算机进行扫描、上色;学校里每一间教室都放置一台,老师则利用计算机为学生讲解课文;打印店里一台台计算机正忙碌的工作着。然而那位经理怎么也想不到将近半个世纪的今天计算机已经在我们的生活中起着不可代替的作用,也从原来笨重的以至于塞满一整个房间的机器到如今教科书厚的液晶。

展望未来。

未来,一个抽象的代名词——触摸不到,感受不到。每个人都有美好的畅想,我畅想畅想着城市美好的未来。城市的美好,必然少不了那一片霓虹灯。繁华的夜景,热闹的人市。那繁荣景象的背后又是什么呢?是一片黑暗吗?不,至少有盏明灯。是那些流浪者的家吗?不,至少有间草屋。光明固然美好,黑暗也将会被无数明灯所点亮。我畅想,畅想城市那份恬静。

当人们迎着朝阳开始一天的工作时,他们的心情是平静而喜悦的。此时,自行车已成“古董”,人们只能在博物馆才能见到。在宽阔、现代化的立交桥上,一辆辆高级轿车来回穿梭。在居民小区里,物业管理是机器人,二十四小时服务。工作的地方没有了原来的狭隘,不再只是人手一台电脑埋头工作,而是两三个人一个办公室,摄像头、监视器什么的都不在有,人们诚实守信、勤勤恳恳。工厂是机器人工作的岗位。

我们把美好的梦想层层堆砌,让高瞻远瞩的目光投向时代的前沿,审视昨天,展望未来,沿着金光大道,一步一步靠近我们心中向往的地方。让我们畅想美好的明天,走向美好的未来!

其实幸福。很难!当黑暗笼罩住了城市,永远没有那一角:有人在打架斗殴。难道这就是美好城市?现在这份重任落下来了,在每个人的肩上,还有我们——新时代的中学生,更落在了我们的笔尖,我们要用笔去描绘未来的城市,画出她最可爱的一面、美丽的一面。我们的校园里,纸屑很珍贵,因为它从不露面。微笑很普通,因为它洋溢在每个人的脸上。城市的美好如同筑房子——第一层是文明,第二层是平安,第三层是繁华,第四层是快乐。只有不停地建造,才能盖上它的屋顶——美好。让我们共同携起手来,建造这幢“美好”的城市!

3. 人工智能的利与弊500字作文 ,研发出最伟大的人工智能。

“呼”长吁一口气,完成一天的工作后,科学家躺在沙发上,享受着机器人的 *** ,渐渐进入了梦中。不知睡了多久,科学家徐徐起来,揉了揉隐隐作痛的头,这位科学家总算决定放松一下,便换了一身行头,无所事事地漫步在街头。

大街上,四周的建筑很干净,毒辣的阳光照在地上,显得格外刺眼。城市的上空一只鸟也没有,显得死气沉沉,科学家有点受不了这样压抑的气氛,便转身走进了一家餐厅。

餐厅也很干净,周围的人们有说有笑,大厅中央的机器人一直保持着人性化的微笑,尽管显得有些僵硬。但不得不说,这里的环境真的很好——端菜的机器人在给你上菜之后还会有礼貌的鞠个躬;地上如果弄脏了很快就会有机器人打扫,甚至连你走路的时候又能听到一个声音一字一顿地提醒您:“小——心——路——滑.”如此贴心的服务,这么高的效率,不久之后这个世界的人们应该都能享受到如此优越的生活条件,科学家这样想这,嘴角都不知不觉得翘了起来。

正当科学家惬意的享受这个美好的时刻时,外面一个看上去瘦弱的身影引起了他的注意。一位衣衫有点脏乱的青年正熟练地翻着装食物残渣的桶。

这位科学家有点纳闷,这么年轻的人是遇到了什么困难才沦落到这地步,好奇心驱使这科学家跟着这位青年来到他,不,应该是他们的住处,阴暗的空间中摆放着各种各样的生活用品,墙角还有几张蜘蛛网,空气中弥漫着腐败的气味,这让科学家皱了皱眉。而这时,屋里的人十分好奇的望着这个不请自来的客人,最终还是屋子的主人们率先打破了这种沉默,说:“你也是难民吗?“ ”难民?“对于这个名词,在科学家的记忆中,这是只属于很久很久以前的词,对于现在这个高科技的社会,还会有难民? ”恩,到我们这儿的全是被i被机器人那些人工智能淘汰的人,我以前在一家餐厅当服务员,结果被机器人淘汰了,后来每一行都有机器人工作,我和许多人都失去了工作, 也没有收入。

“说到这,那人的脸上也露出黯然的神情。 一位中年人补充道:”我曾经是一个老板,后来将自己的财物交给人工智能管理,最后不知怎么,人工智能失去了控制,让我最后破产。

听到了这些,科学家许久无言,独自离开了 站在原地,一动不动地站在原地,双眼有些茫然地眺望远处,这一刻,他对未来和自己的梦想开始迷茫起来:自己还要继续下去吗?自己对人工智能的研究究竟能给多少人带来好处?给多少人带来厄运?不受人类控制的智能最终是会给人来带来毁灭还是新生?。

4. 人工智能的利与弊作文600字 围棋博弈的人机大战,以机器的获胜而落下帷幕,而人工智能的利弊,再度引发了争议,有关人工智能利弊分析的作文。

但我想的更多的是,科技背后的那份渐行渐远的人文情怀。围棋对弈,被列为琴棋书画四大雅事之一。

而今,当人类与一个冰冷的机器,只争技术的优劣,只论智商的高下时,那份弈棋时的淡泊宁静的心境,那份“闲敲棋子落灯花”的情怀,又该置于何地?科技的发达,让通讯变得便捷,于是,当下的我们很少再能写出“多情自古伤离别”的优美诗句,很少能体会“家书抵万金”的情谊万钧。科技的进步,让农耕变得机械化,于是,当下的我们很少能吟诵出“带月荷锄归”的悠闲辞章,很少能感受“汗滴禾下土”的辛劳苦楚。

科技的演变,让社交变得多元,于是,当下的我们很少再能唱出“对影成三人”的独处情怀,很少能理解“执子之手,与子偕老”的至情专一。正如木心先生所说:“从前的日色变得慢,车、马、邮件都慢,一生只够爱一个人。”

科技带给我们便利、快捷的同时,也将我们原本质朴、美好的那份生活味道、人文的情怀稀释很多!因此,让科技拥有人文的情怀,回归如璞玉般的美好生活,才是正途。我国古代,那些璨如星辰的科技巨擘,无一不是既有科技头脑又有人文情怀。

东汉“科圣”张衡,“通五经,贯六艺,拟作《二京赋》,精思傅会,”文***斐然。但同时,他又“善机巧,尤致思于天文阴阳历算”,发明浑天和地动两仪器,且著有多部科学著作。

张衡的科技发明,就是插上了人文情怀的翅膀,才飞的更高更远!众所周知,伟大的物理学家爱因斯坦,不仅拥有超人的科学头脑,还同时有极高的音乐修养,他擅长钢琴和小提琴演奏。他曾坦言,是音乐这位欢乐女神为他驱散了忧郁和喧嚣,驱走了混乱和邪-恶。

是音乐让科学更美丽与和-谐。无独有偶,我国著名科学家钱学森也曾说过:“在我对一件工作遇到困难而百思不得其解的时候,往往是蒋英的歌声使我豁然开朗,得到启示。

我钱学森要***调的一点,就是文艺与科技的相互作用。”

可以窥见,古往今来,科学和人文,从来都是人类发展中相辅相成,不可或缺的两大重要力量。如果人类是飞翔的鸟儿,那么科技和人文就是一对,彼此依托的翅膀,缺了谁,都会产生不可预料的后果!唯有科技的理性,人类会变得坚硬、冷漠、可憎;唯有人文的欢乐,人类会变得软弱、迷乱、醉生梦死。

让科技拥有人文情怀,人类才会走得更远、更久、更好!放下手机,拿起书籍,在翰墨馨香、书册函影中,与智慧交流;关掉空调,走出户外,在春花秋月、夏雨冬雪中,与自然对话;停驻汽车,迈出脚步,在山川河流、花草树木中,与大地亲近,。

5. 人工智能的利与弊作文600字(要原创 “滴滴滴”偌大的实验室中,一位科学家正全神贯注得对着冰冷的机器计算,这位伟大的科学家立志要在如今这个人工智能高度发达的时代,研发出最伟大的人工智能。

“呼”长吁一口气,完成一天的工作后,科学家躺在沙发上,享受着机器人的 *** ,渐渐进入了梦中。不知睡了多久,科学家徐徐起来,揉了揉隐隐作痛的头,这位科学家总算决定放松一下,便换了一身行头,无所事事地漫步在街头。

大街上,四周的建筑很干净,毒辣的阳光照在地上,显得格外刺眼。城市的上空一只鸟也没有,显得死气沉沉,科学家有点受不了这样压抑的气氛,便转身走进了一家餐厅。

餐厅也很干净,周围的人们有说有笑,大厅中央的机器人一直保持着人性化的微笑,尽管显得有些僵硬。但不得不说,这里的环境真的很好——端菜的机器人在给你上菜之后还会有礼貌的鞠个躬;地上如果弄脏了很快就会有机器人打扫,甚至连你走路的时候又能听到一个声音一字一顿地提醒您:“小——心——路——滑.”如此贴心的服务,这么高的效率,不久之后这个世界的人们应该都能享受到如此优越的生活条件,科学家这样想这,嘴角都不知不觉得翘了起来。

正当科学家惬意的享受这个美好的时刻时,外面一个看上去瘦弱的身影引起了他的注意。一位衣衫有点脏乱的青年正熟练地翻着装食物残渣的桶。

这位科学家有点纳闷,这么年轻的人是遇到了什么困难才沦落到这地步,好奇心驱使这科学家跟着这位青年来到他,不,应该是他们的住处,阴暗的空间中摆放着各种各样的生活用品,墙角还有几张蜘蛛网,空气中弥漫着腐败的气味,这让科学家皱了皱眉。而这时,屋里的人十分好奇的望着这个不请自来的客人,最终还是屋子的主人们率先打破了这种沉默,说:“你也是难民吗?“ ”难民?“对于这个名词,在科学家的记忆中,这是只属于很久很久以前的词,对于现在这个高科技的社会,还会有难民? ”恩,到我们这儿的全是被i被机器人那些人工智能淘汰的人,我以前在一家餐厅当服务员,结果被机器人淘汰了,后来每一行都有机器人工作,我和许多人都失去了工作, 也没有收入。

“说到这,那人的脸上也露出黯然的神情。 一位中年人补充道:”我曾经是一个老板,后来将自己的财物交给人工智能管理,最后不知怎么,人工智能失去了控制,让我最后破产。

听到了这些,科学家许久无言,独自离开了 站在原地,一动不动地站在原地,双眼有些茫然地眺望远处,这一刻,他对未来和自己的梦想开始迷茫起来:自己还要继续下去吗?自己对人工智能的研究究竟能给多少人带来好处?给多少人带来厄运?不受人类控制的智能最终是会给人来带来毁灭还是新生?。

6. 人工智能的利与弊600字 随着科技的发展社会的进步,新一代信息技术正在着力打造智慧生活,互联网、智能机、液晶电视、空调也逐渐步入了千千万万的家庭。

1977年英国世界上最大的互联网公司的经理预料,将来任何人都不会在自己的家里拥有一台属于自己的计算机。计算机不会被大多数人使用,然而在日新月异发展的现代化社会里不是用电脑这几乎是不可能的,高楼大厦里职员们正使用计算机记录完成上级布置的任务;**家打好画稿在用计算机进行扫描、上色;学校里每一间教室都放置一台,老师则利用计算机为学生讲解课文;打印店里一台台计算机正忙碌的工作着。

然而那位经理怎么也想不到将近半个世纪的今天计算机已经在我们的生活中起着不可代替的作用,也从原来笨重的以至于塞满一整个房间的机器到如今教科书厚的液晶。展望未来。

未来,一个抽象的代名词——触摸不到,感受不到。每个人都有美好的畅想,我畅想畅想着城市美好的未来。

城市的美好,必然少不了那一片霓虹灯。繁华的夜景,热闹的人市。

那繁荣景象的背后又是什么呢?是一片黑暗吗?不,至少有盏明灯。是那些流浪者的家吗?不,至少有间草屋。

光明固然美好,黑暗也将会被无数明灯所点亮。我畅想,畅想城市那份恬静。

当人们迎着朝阳开始一天的工作时,他们的心情是平静而喜悦的。此时,自行车已成“古董”,人们只能在博物馆才能见到。

在宽阔、现代化的立交桥上,一辆辆高级轿车来回穿梭。在居民小区里,物业管理是机器人,二十四小时服务。

工作的地方没有了原来的狭隘,不再只是人手一台电脑埋头工作,而是两三个人一个办公室,摄像头、监视器什么的都不在有,人们诚实守信、勤勤恳恳。工厂是机器人工作的岗位。

我们把美好的梦想层层堆砌,让高瞻远瞩的目光投向时代的前沿,审视昨天,展望未来,沿着金光大道,一步一步靠近我们心中向往的地方。让我们畅想美好的明天,走向美好的未来!其实幸福。

很难!当黑暗笼罩住了城市,永远没有那一角:有人在打架斗殴。难道这就是美好城市?现在这份重任落下来了,在每个人的肩上,还有我们——新时代的中学生,更落在了我们的笔尖,我们要用笔去描绘未来的城市,画出她最可爱的一面、美丽的一面。

我们的校园里,纸屑很珍贵,因为它从不露面。微笑很普通,因为它洋溢在每个人的脸上。

城市的美好如同筑房子——第一层是文明,第二层是平安,第三层是繁华,第四层是快乐。只有不停地建造,才能盖上它的屋顶——美好。

让我们共同携起手来,建造这幢“美好”的城市。

7. 人工智能的利与弊500字作文 ,研发出最伟大的人工智能。

“呼”长吁一口气,完成一天的工作后,科学家躺在沙发上,享受着机器人的 *** ,渐渐进入了梦中。不知睡了多久,科学家徐徐起来,揉了揉隐隐作痛的头,这位科学家总算决定放松一下,便换了一身行头,无所事事地漫步在街头。

大街上,四周的建筑很干净,毒辣的阳光照在地上,显得格外刺眼。城市的上空一只鸟也没有,显得死气沉沉,科学家有点受不了这样压抑的气氛,便转身走进了一家餐厅。餐厅也很干净,周围的人们有说有笑,大厅中央的机器人一直保持着人性化的微笑,尽管显得有些僵硬。但不得不说,这里的环境真的很好——端菜的机器人在给你上菜之后还会有礼貌的鞠个躬;地上如果弄脏了很快就会有机器人打扫,甚至连你走路的时候又能听到一个声音一字一顿地提醒您:“小——心——路——滑.”如此贴心的服务,这么高的效率,不久之后这个世界的人们应该都能享受到如此优越的生活条件,科学家这样想这,嘴角都不知不觉得翘了起来。

正当科学家惬意的享受这个美好的时刻时,外面一个看上去瘦弱的身影引起了他的注意。一位衣衫有点脏乱的青年正熟练地翻着装食物残渣的桶。这位科学家有点纳闷,这么年轻的人是遇到了什么困难才沦落到这地步,好奇心驱使这科学家跟着这位青年来到他,不,应该是他们的住处,阴暗的空间中摆放着各种各样的生活用品,墙角还有几张蜘蛛网,空气中弥漫着腐败的气味,这让科学家皱了皱眉。而这时,屋里的人十分好奇的望着这个不请自来的客人,最终还是屋子的主人们率先打破了这种沉默,说:“你也是难民吗?“

”难民?“对于这个名词,在科学家的记忆中,这是只属于很久很久以前的词,对于现在这个高科技的社会,还会有难民?

”恩,到我们这儿的全是被i被机器人那些人工智能淘汰的人,我以前在一家餐厅当服务员,结果被机器人淘汰了,后来每一行都有机器人工作,我和许多人都失去了工作, 也没有收入。“说到这,那人的脸上也露出黯然的神情。

一位中年人补充道:”我曾经是一个老板,后来将自己的财物交给人工智能管理,最后不知怎么,人工智能失去了控制,让我最后破产。?

听到了这些,科学家许久无言,独自离开了

站在原地,一动不动地站在原地,双眼有些茫然地眺望远处,这一刻,他对未来和自己的梦想开始迷茫起来:自己还要继续下去吗?自己对人工智能的研究究竟能给多少人带来好处?给多少人带来厄运?不受人类控制的智能最终是会给人来带来毁灭还是新生?

8. 人工智能的利弊800字 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

9. 人工智能利与弊文章 人工智能来临,有人在担忧失业,有人在憧憬未来,有人在发掘行业机会,也有人在研究围棋。

在讨论这些之前,也许我们应该先考虑一下人类的结局。有人可能觉得谈论这个话题太夸张了,那先回忆一下人类历史上究竟发生了哪些不可思议的事情。

不可思议的事情,需要请几个穿越者来判定。我们请1个出生于公元0年出生的人(汉朝人)穿越到公元1600年(明朝),尽管跨越了1600年,但这个人可能对周围人的生活不会感到太夸张,只不过换了几个王朝,依旧过着面朝黄土背朝天的日子罢了。

但如果请1个1600年的英国人穿越到1850年的英国,看到巨大的钢铁怪物在水上路上跑来跑去,这个人可能直接被吓尿了,这是250年前的人从未想象过的。如果再请1个1850的人穿越到1980年,听说一颗**可以夷平一座城市,这个人可能直接吓傻了,130年前诺贝尔都还没有发明出**。

那再请1个1980年的人到现在呢?这个人会不会被吓哭呢?如果35年前的人,几乎完全无法想象互联网时代的生活,那么人类文明进入指数发展的今天,我们怎么能想象35年后的时代?超人工智能,则是35年后的统治者。首先,我们明确一下人工智能的分类:目前主流观点的分类是三种。

弱人工智能:弱人工智能是擅长于单个方面的人工智能。比如阿尔法狗,能够在围棋方面战胜人类,但你要问他李世石和柯洁谁更帅,他就无法回答了。

弱人工智能依赖于计算机***大的运算能力和重复性的逻辑,看似聪明,其实只能做一些精密的体力活。目前在汽车生产线上就有很多是弱人工智能,所以在弱人工智能发展的时代,人类确实会迎来一批失业潮,也会发掘出很多新行业。

***人工智能:人类级别的人工智能。***人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。

创造***人工智能比创造弱人工智能难得多。百度的百度大脑和微软的小冰,都算是往***人工智能的探索,通过庞大的数据,帮助***人工智能逐渐学习。

***人工智能时代的到来,人类会有很多新的乐趣,也会有很多新的道德观念。超人工智能:各方面都超过人类的人工智能。

超人工智能可以是各方面都比人类***一点,也可以是各方面都比人类***万亿倍的存在。当人工智能学会学习和自我纠错之后,会不断加速学习,这个过程可能会产生自我意识,可能不会产生自我意识,唯一可以肯定的是他的能力会得到极大的提高,这其中包括创造能力(阿尔法狗会根据棋手的棋路调整策略就是最浅层的创新体现,普通手机版的围棋,电脑棋路其实就固定的几种)。

我们距离超人工智能时代,到底有多远呢?首先是电脑的运算能力,电脑运算能力每两年就翻一倍,这是有历史数据支撑的。目前人脑的运算能力是10^16 cps,也就是1亿亿次计算每秒。

现在最快的超级计算机,中国的天河二号,其实已经超过这个运算力了。而目前我们普通人买的电脑运算能力只相当于人脑千分之一的水平。

听起来还是弱爆了,但是,按照目前电子设备的发展速度,我们在2025年花5000人民币就可以买到和人脑运算速度抗衡的电脑了。其次是让电脑变得智能,目前有两种尝试让电脑变得智能,一种是做类脑研究。

现在,我们已经能够模拟1毫米长的扁虫的大脑,这个大脑含有302个神经元。人类的大脑有1000亿个神经元,听起来还差很远。

但是要记住指数增长的威力——我们已经能模拟小虫子的大脑了,蚂蚁的大脑也不远了,接着就是老鼠的大脑,到那时模拟人类大脑就不是那么不现实的事情了。另一种是模仿学习过程,让人工智能不断修正。

基于互联网产生的庞大数据,让人工智能不断学习新的东西,并且不断进行自我更正。百度的百度大脑据说目前有4岁的智力,可以进行几段连续的对话,可以根据图片判断一个人的动作。

尽管目前出错的次数依旧很多,但是这种能力的变化是一种质变。在全球最聪明的科学家眼中,***人工智能的出现已经不再是会不会的问题,而是什么时候的问题,2013年,有一个数百位人工智能专家参与的调查 “你预测人类级别的***人工智能什么时候会实现?”结果如下:2030年:42%的回答者认为***人工智能会实现2050年:25%的回答者2070年:20%2070年以后:10%永远不会实现:2%也就是说,超过2/3的科学家的科学家认为2050年前***人工智能就会实现,而只有2%的人认为它永远不会实现。

最关键的是,全球最顶尖的精英正在抛弃互联网,转向人工智能——斯坦福、麻省理工、卡内基梅隆、伯克利四所名校人工智能专业的博士生第一份offer已经可以拿到200-300万美金。这种情况历史上从来没有发生过。

奇点大学(谷歌、美国国家航天航空局以及若干科技界专家联合建立)的校长库兹韦尔则抱有更乐观的估计,他相信电脑会在2029年达成***人工智能,到2045年,进入超人工智能时代。所以,如果你觉得你还能活30、40年的话,那你应该能见证超人工智能的出现。

那么,超人工智能出现,人类的结局究竟是什么?1、灭绝——物种发展的通常规律达成结局1很容易,超人工智能只要忠实地执行原定任务就可以发生,比如我们在创造一个交通指示系统的人工智能的时候,最初的编程设定逻辑为利用大数据。

10. 人工智能的弊观作文 人工智能来临,有人在担忧失业,有人在憧憬未来,有人在发掘行业机会,也有人在研究围棋。在讨论这些之前,也许我们应该先考虑一下人类的结局。

目前主流观点的分类是三种。

弱人工智能:弱人工智能是擅长于单个方面的人工智能。比如阿尔法狗,能够在围棋方面战胜人类,但你要问他李世石和柯洁谁更帅,他就无法回答了。

弱人工智能依赖于计算机***大的运算能力和重复性的逻辑,看似聪明,其实只能做一些精密的体力活。

目前在汽车生产线上就有很多是弱人工智能,所以在弱人工智能发展的时代,人类确实会迎来一批失业潮,也会发掘出很多新行业。

***人工智能:人类级别的人工智能。***人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造***人工智能比创造弱人工智能难得多。

百度的百度大脑和微软的小冰,都算是往***人工智能的探索,通过庞大的数据,帮助***人工智能逐渐学习。

***人工智能时代的到来,人类会有很多新的乐趣,也会有很多新的道德观念。

超人工智能:各方面都超过人类的人工智能。超人工智能可以是各方面都比人类***一点,也可以是各方面都比人类***万亿倍的存在。

当人工智能学会学习和自我纠错之后,会不断加速学习,这个过程可能会产生自我意识,可能不会产生自我意识,唯一可以肯定的是他的能力会得到极大的提高,这其中包括创造能力(阿尔法狗会根据棋手的棋路调整策略就是最浅层的创新体现,普通手机版的围棋,电脑棋路其实就固定的几种)。

相关文章推荐